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Abstract

MPQC (Massively Parallel Quantum Chemistry) is a widely used computational quantum chemistry
code. It is capable of performing a number of computations commonly occurring in quantum chemistry.
In order to achieve better performance of MPQC, in this report we present a detailed performance
analysis of this code. We then perform loop and memory access optimizations, and measure perfor-
mance improvements by comparing the performance of the optimized code with that of the original
MPQC code. We observe that the optimized MPQC code achieves a significant improvement in the
performance through a better utilization of vector processing and memory hierarchies.



1 Introduction

MPQC [1], which stands for Massively Parallel Quantum Chemistry, is a widely used computational
quantum chemistry [2] code to compute electronic structures and properties of atoms and molecules. It
provides a number of ab-initio methods to do so including Hartree-Fock method (HF) and MøllerPlesset
perturbation theory (MP) [3], based on the Schrödinger equation.

The Hartree-Fock method is central to computational quantum chemistry, and one of the simplest
methods. It is primarily used in electronic structure calculations. It performs calculations based on
the averaged effect of electron repulsions, or mean field, and does not take into account the exact
electron repulsion effects. The results of these calculations are approximate atomic energies expressed
in terms of the system’s wave function. Because of the approximate calculations, HF is one of the
fastest methods for these computations. HF calculations form the foundation for many other so-
phisticated electronic structure computations. One such method is the Møller-Plesset perturbation
theory, which corrects results of HF through computation of electron-electron repulsion energies, or
electronic correlation. MP is based on Rayleigh-Schrödinger perturbation theory, and usually defined
to the second order (MP2), third order (MP3), or fourth order (MP4). It was published way back in
1934 [4]. The most time consuming, but one of the most important part in such computations (HF,
MP2) is evaluation of two-electron integrals [5] [6] [7], also known as electron repulsion integrals. The
electronic structure computations are performed using a basis set [6]. A basis set is a set of basis
functions which are used to create molecular orbitals. These basis functions are generally atomic or-
bitals which are taken in a linear combination to form molecular orbitals. A minimal basis set defines
only basic aspects of the orbitals. Slater Type Orbital (STO) basis functions form minimal basis
sets. Further, an extended basis set considers higher orbitals of molecules and accounts for their sizes
and shapes. Examples of extended basis sets are Double-Zeta (cc− pVDZ), Triple-Zeta (cc− pVTZ),
Quadruple-Zeta (cc− pVQZ), Quintuple-Zeta (cc− pV5Z) and Sextuple-Zeta (cc− pV6Z) basis sets.

MPQC provides an implementation for calculation of Hartree-Fock energies and gradients for
various conditions, and second order Møller-Plesset perturbation theory, including among few other
methods. MPQC is written mostly in C++ and is based on the object-oriented model. MPQC’s input
format is as well based on object-oriented model. It also provides support for parallel computations
through both message-passing and shared-memory models.

In this report, we present a detailed performance profiling and analysis of MPQC code, mainly for
computations of HF and MP2 energies. We also present optimization of one of the functions picked
through the performance data obtained.

2 MPQC Inputs

The primary input to MPQC is an object oriented format file which defines all the input objects to
be fed to the computations. For information on the input format, and further details on the inputs to
MPQC, refer to the MPQC documentation. For our purposes of performance analysis of MPQC, we
will only focus on two components of the input: the molecule for which energies are to be calculated,
and a basis set which we take from the class of Gaussian basis sets. Integral evaluation time complex-
ity increases steeply with the size of the input molecule. For example, computation of MP2 energies
grows as O(n8), where n is the molecule size. In this report we consider the following input molecules:
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Name Formula Mol. Mass ≈
1. Water H2O 18
2. Water dimer H4O2 36
3. Methane CH4 16
4. Ethane C2H6 30
5. Butane C4H10 58
6. Octane C8H18 114

We use some of the commonly used Gaussian basis sets in our experiments presented in this report.
One is an STO basis set, and others are Quadruple-Zeta, Quintuple-Zeta, and Sextuple-Zeta. These
are listed below along with the total number of basis functions in each set:

Basis Set Num. Basis Functions
1. STO− 3G 15
2. cc− pVQZ 144
3. cc− pV5Z 241
4. cc− pV6Z 375

Further information on the these basis sets can be found along with the basis sets distributed along
with MPQC in the MPQC documentation for the GaussianBasisSet class [8]. We use these molecules
and basis sets inputs to calculate Hartree-Fock energies, and second order MP (MP2) energies of the
respective molecules.

3 Experimental Environments

We use two main environments to execute MPQC in our experiments. The first is a IBM iDataPlex
system linux cluster. Each node in this cluster contains two quad-core Intel Xeon X5550 processors
(based on the Nehalem microarchitecture), hence providing a total of 8 cores on each node. The clock
speed is 2.67 GHz, and each node is equipped with a total of 24 GB 1333 MHz DDR3 memory. Each
processor has a 8 MB of L3 cache shared among all 4 cores, and 256 KB of L2 and 64 KB (32 KB
instruction + 32 KB data) of L1 caches per core. Peak theoretical memory bandwidth is 32 GB/s.
The nodes in this cluster are connected by 4X QDR InfiniBand interconnects. We run our various
scaling performance analysis experiments, which we will describe later, on this platform.

The second platform we use is a single node linux system, with two hex-core 2.93 GHz Intel Xeon
X5670 processors (based on the Nehalem microarchitecture, codenamed Westmere), providing a total
of 12 cores. This system is equipped with 94 Gb of DDR3 main memory. Each on-board processor has
12 MB of L3 cache shared among all 6 cores, and 256 KB sized L2 and 64 KB sized (32 KB instruction
+ 32 KB data) L1 caches per core. The maximum memory bandwidth is 32 GB/s. We mainly utilize
this system for low level profiling and optimization analysis experiments.

4 Function-level Performance Analysis

We will start a detailed performance profiling and analysis of MPQC with details on the execution
times of various functions in the program, their scaling with respect to the number of nodes and
threads, and the input basis sets. To do so, we use a number of profiling tools available, but we
will only present the results obtained through the profiling tool TAU [9]. In order to obtain data
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using TAU, the MPQC code had to be compiled by TAU compiler wrappers with TAU libraries, and
executed using the TAU runtime framework.

Recall that MPQC is capable of both message-passing and threading parallelism, where generally
one would want to have message-passing parallelism across a number of compute nodes, and threading
parallelism within a node across all the cores. MPQC implements message-passing using MPI, and
threading using pthreads. In this section we use the first test environment – the linux cluster. On
this platform we can take advantage of both, a number of compute nodes, and at most 8 cores per
node. Given this architecture and the capabilities of MPQC, we are faced with four main parallel
configurations for the execution of MPQC. These configurations are described below.

1. We call the first configuration “single-single” (SS), where a single MPI process is executed on
each compute node, and each MPI process using a single thread. Hence, only one core of each
node is utilized in this configuration.

2. In the second configuration, “multiple-single” (MS), each compute node executes multiple MPI
processes, and each MPI process using a single thread. In this configuration, we execute one
MPI process per node (each with a single thread), making total of at most 8 MPI processes (for
8 cores) per compute node, utilizing all the cores.

3. The third configuration, “single-multiple” (SM), consists of each compute node executing a single
MPI process, and each MPI process executing multiple threads. In our case we used 8 threads
per MPI process, hence utilizing all the available cores.

4. The fourth configuration is the most general, “multiple-multiple” (MM), where each node runs
multiple MPI processes, each process executing multiple threads. In our experiments with 2
MPI processes per node and 4 threads per MPI process, we noticed that the results obtained in
this configuration were almost the same as in the “single-multiple” configuration, hence we will
skip the data from this configuration in the following.

We present the performance profiling and scaling results of MPQC for each of the first three
configurations one-by-one in the following. We then compare all these configurations by comparing
the presented results. We will first focus only on the execution time based profiling. We use the water
molecule (H2O) as input to compute its Hartree-Fock energies using two different basis sets, cc− pVQZ

and cc− pV5Z.

4.1 Configuration SS

We begin by presenting the scaling of MPQC computing the Hartree-Fock energies of H2O. In Fig. 1
we show log-log plots of total execution time scaling with varying number of cores used. The total
time spent in MPI-routines and non-communication components of the total execution time are also
shown as a function of the number of cores. The distribution of time consumed by various routines
across all the nodes is also shown for the case when number of nodes is 8.

Note that the larger the basis set used, the better the program scales. With cc− pVQZ, the code
scales well until 32 cores (or, compute nodes in this case), are used. But the MPI-communication
time surpasses the local time at 16 cores itself. Therefore, we see that the total execution time scales
well only on small number of cores, after which it starts to increase due to the increased MPI time.
Similarly, with the larger basis set cc− pV5Z, this behavior can be seen, but shifted to the right. It
is able to scale well until 32 cores, after which on 64 cores, the MPI time becomes more significant
than the local time. Also note the large variations in time taken by the MPI time across all the nodes.
This imbalance also contributes to the overall MPI time.
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Figure 1: Configuration SS: One MPI process per compute node and one thread per MPI process.
The plots on the top show strong scaling of MPQC w.r.t. the number of cores used (which is equal
to number of nodes in this configuration), for computing HF energies of H2O. The plot on the left
was obtained when using the basis set cc− pVQZ, while the one on the right was using cc− pV5Z.
Note that 7 cores per compute node are idle. The bar chart on the bottom shows the distribution
of execution times across all nodes when 8 nodes are used, along with mean and standard deviation.
Each color represents a different routine – light blue and red: blockbuildprim(), green and violet:
compute erep(), orange: MPI Allreduce(), blue and light green: init pure().

Bad scaling due to MPI-routines in this configuration is also expected since only one core per
compute node is used while the remaining 7 cores sit idle. Hence, all the MPI communication goes
over the interconnect network. We will now further investigate the scaling by breaking down these
timing results into smaller components – routines of MPQC executed during a run.

4.1.1 Non-communication Routines

To get a further insight into the bottlenecks in the program, a breakdown of time spent locally on a
compute node is shown in Fig. 2 as log-log plots. Only the top few most time consuming routines are
shown. The figure contains scaling of these routines with respect to the number of cores.

It can be clearly seen in this figure that the most time consuming routines which are listed, scale
quite well w.r.t. number of cores used. One would note that there is one exception. The time consumed
by the routine init pure remains almost the same irrespective of the number of cores.

Due to this, it is clear that at point on the number of cores axis, the time spent in this routine will
be more significant than all others, thereby limiting the scaling of the application. This point occurs,
in the plots in Fig. 2, around 8 cores in the case of basis set cc− pVQZ, and around 32 in the case
of cc− pV5Z. At this point, the total time spent in non-communication routines will flatten out, and
will make this routine a major bottleneck, as can be seen at points with 16, 32 and 64 cores in the
first case.
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Figure 2: Breakdown of total execution time in non-MPI component into times consumed by various
routines in MPQC in configuration SS. On the left is a plot for an execution while using the basis set
cc− pVQZ, and on the right is while using cc− pV5Z.

In both these results it can be seen that the routines blockbuildprim() and compute erep() are
the two most time consuming routines for most of the cases. It can also be seen that these two routines
show super-linear scaling around 16 cores.

4.1.2 MPI Routines

A breakdown of the total time spent in various MPI routines is shown as a log-log plot in Fig 3, in a
similar fashion as for non-communication routines above. Scaling of the amount of time taken by a
few top time consuming MPI routines is shown in this figure.

It can be noted from Fig. 3 that the total time consumed by MPI routines increases with the
number of cores, although in the case of using cc− pV5Z, this increase is marginal. This behavior is
expected in most MPI programs since the amount of communication increases as the number of nodes
is increased. MPI Allreduce() is the most time consuming routine among all MPI routines used in
MPQC. It is followed by MPI Bcast() and the difference in times of these two routines decreases with
increasing number of cores. Basically, MPI Bcast()’s rate of increase in time is higher than the former.
Other routines shown, such as MPI Init thread() and MPI Reduce() have an increasing rate of increase
in time. The time consumed by these with lower number of cores is comparatively insignificant, but
becomes quite significant as the number of cores are increased.

It can also be seen that the amount of time consumed by MPI Allreduce() remains nearly the
same except for the case when going from 2 to 4 cores with the larger basis set. It can therefore be
seen that other MPI routines become more significant in comparison for larger number of cores.

Note that these are strong scaling results. Hence even though the number of messages may increase
with increasing number of nodes (increasing total amount of latency for communication setup), the
sizes of these messages would decrease (and hence, decrease the message transmission times). This
can probably explain the behavior of MPI Allreduce() and MPI Bcast() in flattening out. It will also
explain the behavior for the initialization routine in that the number of initializations increase with
number of nodes, and, hence, the time consumed by each initialization would also increase.

The above breakdown into MPI routines makes it more clear as to how the overall execution times
are affected, and how the times consumed by MPI routines eventually become significant and dominant
compared to the non-communication routines. Fig. 5 contains the mean execution times for some of
the most time consuming routines.
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Figure 3: Breakdown of the total execution time spent in MPI routines into times consumed by each
of the individual routines in MPQC in configuration SS. Only the top few most time consuming MPI
routines are shown which are candidates for bottlenecks in the program. On the left is a plot obtained
using the smaller basis set cc− pVQZ, and on the right is one obtained using the larger basis set
cc− pV5Z.

Figure 4: Mean message sizes and their standard deviation for various MPI routines when 8 nodes are
used. Note the high variation in the message sizes for all-reduce and broadcast routines.

4.2 Configuration MS

In the second configuration, we execute 8 MPI processes per node, 1 process per core, and a single
thread for all. In Fig. 6 we show log-log scaling plots of total execution time scaling with varying
number of cores. The total time spent in the two components, MPI routines and non-MPI routines,
are also shown as a function of the number of cores. The distribution of the execution times for various
routines across the cores used is also included.

We see a very similar behavior here as for the first configuration SS. The program scales better with
larger basis set used. In the case of cc− pVQZ, the code scales until 8 cores, beyond which the total
execution time flattens out and eventually increasing. In the case of the larger basis set cc− pV5Z,
the code scales well until 32 cores. We observed similar numbers for configuration SS earlier. The
two components of the total time also show similar behavior. The crossover of total time taken by
MPI routines and non-MPI routines happens at 32 cores for smaller basis set and at 64 for the larger
basis set. Therefore, we again see that the total execution time scales well only on small number of
cores. Note that in this configuration we obtained data for the same number of compute nodes as
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Figure 5: Top few mean values of execution times taken by various MPI and non-MPI routines in
configuration SS when 8 nodes are used.

in configuration SS, giving us a total of 512 cores for 64 nodes. Distribution of the times taken by
various routines across the cores used also shows a very similar pattern as for configuration SS, with
unbalanced MPI communication times.

In the following we will now investigate the scaling further by breaking down these timing results
into individual routines.

4.2.1 Non-communication Routines

A breakdown of the amount of time spent locally on a compute node is shown in Fig. 12 as log-log
plots, scaling w.r.t. the number of cores used. Only the top few most time consuming routines are
considered.

It can be seen that the listed most time consuming routines, scale quite well w.r.t. number of
cores used. We again see one exception, routine init pure() consumes almost same amount of time
irrespective of the number of cores used. Due to this, the overall scaling for non-MPI routines is
limited at 16 cores and 128 cores, respectively, for the smaller cc− pVQZ and larger cc− pV5Z basis
sets. We note that these points occur for larger number of cores in this configuration compared to
configuration SS.

Again, in both these results the routines blockbuildprim() and compute erep() are the two most
time consuming routines for most of the cases, and the former routines has a higher rate of super-
linear scaling compared to the latter beyond 8 and 64 cores in the two cases respectively. In this
case, some other routines (int buildgcam() and build not using gcs()) also show this super-linear
scaling behavior.

4.2.2 MPI Routines

A breakdown of the total time spent in few most time consuming MPI routines is shown as a log-log
plot in Fig 8 for the two cases of using basis sets cc− pVQZ and cc− pV5Z.
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Figure 6: Configuration MS: 8 MPI processes per compute node, one thread per MPI process. Strong
scaling w.r.t. the number of cores used for computing HF energies of H2O is shown in the plots on
the top. The plot on the left was obtained when using the basis set cc− pVQZ, while the one on the
right when using cc− pV5Z. In this case, all the cores on a node are utilized. The bar chart on the
bottom shows the distribution of execution times across 8 cores.

As seen Fig. 8, the total time consumed by MPI routines increases with the number of cores. This
increase is marginal for smaller number of cores used.

Similar to configuration SS, MPI Allreduce() is the most time consuming routine among all MPI
routines here, followed by MPI Bcast(). In this configuration we are able to see the points where
MPI Bcast() becomes the most dominant MPI routine. This happens at 64 cores in both cases as
seen in the figure. We also see a similar behavior for MPI Allreduce(). Fig. 9 shows the mean and
standard deviations of the message sizes for various MPI routines. We again see a similar behavior as
in for configuration SS. We show the exclusive times taken by top few most time consuming routines
in Fig. 10. Here also we see similar pattern as the previous configuration.

4.3 Configuration SM

This configuration incorporates the use of multi-threading. Here, each compute node executes a single
MPI process, and each MPI process executes 8 threads. Plots of total execution time, total time spent
in MPI routines, and non-MPI routines in this configuration are shown in Figure 11 as functions of
the number of cores used. In this case as well all 8 cores on a node are utilized.

In this configuration we see quite different behavior compared to the first two configurations SS and
MS. Overall, the code scales until 32 cores for the case with cc− pVQZ basis set, and 64 for the case
with cc− pV5Z basis set, after which the execution time flattens out. In this case we see that non-MPI
routines do not scale well, as was the case earlier, beyond certain points. Both non-MPI routines and
MPI routines show a slow down as the number of cores is increased beyond these points. We also
note that the time consumed by MPI routines always remains insignificant compared to the times
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Figure 7: Breakdown of the time spent in non-MPI routines into times consumed by each individual
routine in configuration MS. On the left is a plot for an execution using the basis set cc− pVQZ, and
on the right is one using cc− pV5Z basis set.
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Figure 8: Breakdown of the total execution time spent in MPI routines into times consumed by each
of the individual routines in configuration MS. On the left is a plot obtained using the smaller basis
set cc− pVQZ, and on the right is one obtained using the larger basis set cc− pV5Z.

consumed by non-MPI routine, and we never see the crossovers we saw in previous configurations.
The shape of the total execution time curve is mostly defined by the non-MPI routines which also
show a similar curve shape.

Let us now break down these timing results into individual routines in order to investigate the
reasons behind such a different behavior.

4.3.1 Non-MPI Routines

A breakdown of the amount of time spent locally on a compute node is shown in Fig. 12 as log-log
plots, scaling w.r.t. the number of cores used. Only the top few most time consuming routines are
considered.

If we remove the routines wait threads() and start threads() from the plots, we see a similar
behavior by all the other routines as we saw in the previous configurations. The routine init pure()
again shows a constant time consumption irrespective of the number of cores, and becomes the dom-
inant routine beyond 16 cores and 64 cores for the cases with cc− pVQZ and cc− pV5Z basis sets
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Figure 9: The mean (top) message sizes and their standard deviation (bottom) for various MPI routines
in configuration MS while using 8 cores. There is a high variation in message sizes for all-reduce and
broadcast.

Figure 10: Mean exclusive execution times consumed by top few routines including both MPI and
non-MPI routines when 8 cores are used.

respectively. Routines block build prim() and compute erep() remain the most time consuming for
most of the cases.

Since this is a threaded configuration, the thread routines play a major role in the execution
times. In the plots in Fig. 12 we can clearly see that the routine wait threads() is highest in terms of
time consumption and dominates the overall execution time. This routine shows a significant slowdown
beyond 64 cores in both cases above. This dictates the overall execution time to also show a slowdown.

4.3.2 MPI Routines

Fig. 13 contains log-log plots of a breakdown of the total time spent in the most time consuming MPI
routines for the two cases of using basis sets cc− pVQZ and cc− pV5Z.

As seen Fig. 13, the total time consumed by most MPI routines increases with the number of cores.
The total MPI time is again dominated by the two routines, MPI Allreduce() and MPI Bcast().
We also see MPI Reduce() routine to contribute significantly to the total time, although it shows
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Figure 11: Configuration SM: 1 MPI processes per compute node, 8 threads per MPI process. Strong
scaling w.r.t. number of cores used, of MPQC computing HF energies of H2O. The plot on the left
was obtained with the basis set cc− pVQZ, while the one on the right was with cc− pV5Z. In this
configuration also all cores of a node are utilized.
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Figure 12: Breakdown of the time spent in non-MPI routines into times consumed by each individual
routine in the configuration SM. On the left is a plot for execution using the basis set cc− pVQZ, and
on the right is using cc− pV5Z basis set.

fluctuations around a flat line in the second case with cc− pV5Z basis set.
In Fig. 14, which shows the mean exclusive time consumed by various routines on 8 nodes, we

see that the high mean value for wait threads() routine skews the performance quite a lot. We also
saw that there is a high imbalance in time consumed by various threads across the cores used. For
example, a histogram in Fig. 15 shows that while most threads follow the normal distribution of time
consumed, there are a few outliers which would greatly skew the performance.

4.4 Comparisons

We have now seen the performance of MPQC with the three different configurations, and also noted
that block build prim() and compute erep() are two routines which consume largest amount of
time in most cases. The MPI communications and thread routines prove to be a bottleneck for larger
number of cores. In this subsection we compare the results presented above for the three configurations
in order to find which configuration works the best overall.
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Figure 13: Breakdown of the total execution time spent in MPI routines into times consumed by each
of the individual routines in configuration SM. On the left is a plot obtained using the smaller basis
set cc− pVQZ, and on the right is one obtained using the larger basis set cc− pV5Z.

The plots above in Fig. 16 put together the total runtime, MPI routines time, and non-MPI routines
time for the three aforementioned configurations for a comparison. We observe a very similar behavior
for the configurations SS and MS, which are both non-threaded versions. The total execution times of
these two cases are almost the same, time consumed by non-MPI routines are also almost the same.
Time spent in MPI routines is slightly higher in the configuration SS compared to MS. This is expected
because for the same number of cores, the former configuration uses larger number of nodes, equal to
the number of cores used, than the latter, where a new node is added for every 8th MPI process, and
the inter-node communication latencies are higher than intra-node communication latencies.

Further, we see that the overall performance of SS and MS configurations is higher than the
threaded configuration SM given the same number of cores. The slowdowns observed beyond 32
cores in the first case (cc− pVQZ) and 64 cores in the second case (cc− pV5Z) are, as previously
mentioned, due to dominance of MPI routines in configurations SS and MS, and due to thread routines
in configuration SM.

5 Function compute erep()

Given the above performance analysis results of MPQC, we pick the configuration MS for any further
experiments since it performs the best in most cases. We recall the two most time consuming non-
MPI routines are block build prim() and compute erep(). We pick the compute erep() for further
performance analysis and optimizations.

The routine compute erep() computes the two-electron repulsion integrals for a shell-quartet and
reorganizes them in memory with respect to the molecular orbitals. It takes as input a shell-quartet
and angular momenta of the four shells, and outputs the computed integrals for this input. This
function involves a substantial data movement, which is a major bottleneck in this routine. During a
single run of MPQC, this routine is called multiple times. In our experiments with the aforementioned
inputs, depending on their sizes the number of calls ranges from O(104) to O(106) approximately.
Fig. 17 shows the total time taken by this routine on each of the cores used. It shows quite good load
balancing.

This function contains a number of deep loop nests. The main loop nest that we are considering
is the one executed for majority number of times compared to others. This set consists of four outer
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Figure 14: The mean exclusive times consumed by various routines when using 8 nodes, each with 8
threads (64 threads in total.)

loops, and five sets of inner loops under some conditions, each set consisting of three to four loops.
The basic structure of the outer loop nest is shown in a selective code extract in Fig. 18. This set of
the four outer loops is over the numbers of contractions in the shell-quartet under consideration. The
index ranges of the inner loops are computed here as the number of cartesian functions in the shells
of the shell-quartet computed using the respective angular momentum over their centers.

The outer loop nest contains five conditional inner loop nests – first, third and fifth nests with four
loops each, and second and fourth with three loops each. The first loop nest’s code extract is shown
in Fig. 19. This nest is executed for the majority number of calls to compute erep and, hence, we will
mainly focus on this set in the rest of the following analysis and optimization. Loop nest four is the
second in majority of the number of calls, and we will consider this for some parts in our analysis as
well.

The main purpose of this loop nest 1 is to reorganize and move the computed integrals from
shiftbuffer to int buffer. This memory copy has sequential reads from shiftbuffer, but strided
writes to int buffer. These stride sizes are not constant, and are computed on the fly based on which
cartesian function of which contraction number of each of the shells in the quartet are currently under
consideration, which are defined by the above eight loops.

6 Intra-function Performance Profiles and Analysis

In the following we present some of the performance analysis results of our focal function compute erep().
This part of the analysis is based on the hardware counters for various metrics. We used PAPI [10]
and Intel Vtune [11] to obtain these performance profiles. PAPI gathers hardware counter data during
an execution and supports parallel codes. It can also obtain loop level profiles, and provides execution
time information but can obtain information from a limited set of the hardware counter based metrics.
Vtune provides information from many of the available hardware counters. It performs multiple runs
of the code to obtain the values from the specified counters, with runs consuming a lot more time
compared to a typical execution of the code. Hence, Vtune is not used for time based analyses. We
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Figure 15: A histogram of the number of threads binned according to the amount of time consumed
by each. Note the normal distribution of time w.r.t. number of threads, and a few outliers which have
high values of time consumption. These outliers skew the performance by a large margin.

obtain profiling data for a number of hardware metrics. These metrics include data TLB load and store
hits and misses, load and store hits and misses for various caches available (L1D, L2, LLC), number of
instructions issued and retired, number of cycles, number of floating point operations, and the such.
In the following we present performance scaling data for various inputs and number of processes.

6.1 Scaling with Number of Processes

In order to study the behavior of various metrics with respect to the number of processes, we obtained
the data presented and discussed below. In Fig. 20 we show plots of the obtained data. Plot (a)
shows the scaling of execution time of compute erep(), its main outermost loop and the first and
fourth inner loop nests as a function of the number of processes. The obtained results are quite
as expected, and we see almost perfect scaling. This is mainly because compute erep() does not
contain any MPI communication within. Plot (b) shows the number of floating point operations per
process and (c) shows the corresponding Flops. Again, the number of floating point operations scale
as expected and the obtained Flops values obtained remain near constant. Plots (d) and (e) in Fig. 20
show scaling data on instructions per cycle (IPC) and percentage of instruction replay respectively.
In both cases we obtain nearly the same values, irrespective of the number of processors – again, as
expected. The expected behavior of all these metrics basically means that the function compute erep()
computationally scales well with the number of processes.
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Figure 16: Comparison of the three configurations SS, MS and SM. On the left is a log-log plot for
the case with cc− pVQZ basis set and on the right is one with cc− pV5Z basis set. These plots show
the total execution times, execution times for non-MPI routines, and for MPI routines in the three
configurations for comparison. Blue lines represent configuration SS, green represents configuration
MS and red represents configuration SM.

6.2 Scaling with Input Molecule Size

We further study the performance of compute erep with respect to the input molecules. For this, we
use the molecules H2O (water), H4O2 (water dimer), CH4 (methane), C4H10 (butane), and C8H18

(octane) as described in Section 2. Fig. 21 contains plots of the obtained results. Similar to the
previous scaling results, we obtain data on the same metrics. Fig. 21 (a) shows the execution times
of compute erep(), and the main loop and inner loop nests 1 and 4, for the various input molecules.
Except for the dip for H2O we see that the times scale almost linearly with the molecular mass of the
molecules. Plot (b) shows the number of floating point operations and (c) shows the performance in
Flops. IPC and instruction replay rate are shown in plots (d) and (e) respectively. We note that IPC
tends to increase slightly with the molecule size, as does the overall performance (Flops).

7 MPQC Optimization

Based on all the above analysis, we study the optimization of the function compute erep(). In the
following we perform a series of optimizations, from loop optimization to memory movement optimiza-
tions, and study the performance change compared to the original code.

7.1 Loop Optimizations

A few loop optimization techniques were explored, and loop unrolling proved to be the most beneficial
in terms of performance. We unrolled the innermost loops of the loop nests 1 and 4 by a factor of 2,
4 and 8 to analyze the performance improvements. Fig. 22 shows some performance data comparing
the original code with loop unrolled code, with unroll factors of 2 and 4. We see that in most cases,
unrolling the loops by factor of 2 improves performance the most, and we use this for all subsequent
experiments. The unroll factor is a parameter which can be tuned based on the system to obtain best
performance.

In Fig. 23 we show the comparison in performance between the original MPQC code, and code
with loop optimization (unrolling). Data is shown for different input molecules. In the plots, the
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Figure 17: The distribution of time taken by the routine compute erep() across all the 8 cores used
along with the means and standard deviations. The top chart is with configuration SS and bottom is
with configuration MS.

loop optimized version of the code shows about 18% decrease in the execution time for inner loop 1
and 9% for inner loop 4. It also has significant decrease in the number of instruction replays – 41%
less instruction replays for inner loop 1 and 33% for inner loop 4. Due to the observed decrease in
execution time with the optimized code, Flops achieved by the code shows an increase with 10% for
inner loop 1 and 22% for inner loop 4. Further, the overall average number of instructions executed
per cycle also shows an increase of 32% for inner loop 1 and 4% for inner loop 4.

7.2 Memory Access Optimizations

We performed a detailed memory profiling for the various components of the function compute erep().
This includes the memory access patterns, amount of cache hits and misses and TLB hits and misses.
As we mentioned earlier, memory reads in loop nest 1 are sequential, but memory writes are not
contiguous. The stride values between consecutive writes varies with the loop iterations. Fig. 24
shows a histogram of the values of strides. It shows that smaller stride values occur more frequently
than higher values, as well as the number of smaller stride values are larger than higher values. A
strided memory access pattern causes increased cache and TLB misses. Given the above pattern, in
order to optimize the memory writes, we implemented a data blocking scheme. It uses a bucketing
approach based on the actual index in the destination buffer. An intermediate buffer small enough to
fit in the cache is used to temporarily store the integral values being written, and once the buffer is
full, the integral values are written to their intended destination indices in a sequential manner. This
introduction of sequentiality tends to improve the performance by reducing the number of cache and
TLB misses.

The size of the buckets (and the number of bits used to hash map indices) is a tunable parameter.
After exploring a few values, we obtained best performance with number of bits as 8, and hence
bucket size as 256. Using these values, we performed further performance analysis and comparison
with previous version of MPQC code and the original version. In Fig. 25 we present such data for
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// am1, am2, am3, am4 = angular momenta over shell centers

ogc1 = 0;

for (int i = 0; i < nc1; i++) {
int tsize1 = INT_NCART_NN(am1);

ogc2 = 0;

for (int j = 0; j < nc2; j++) {
int tsize2 = INT_NCART_NN(am2);

ogc3 = 0;

for (int k = 0; k < nc3; k++) {
int tsize3 = INT_NCART_NN(am3);

ogc4 = 0;

for (int l = 0; l < nc4; l++) {
int tsize4 = INT_NCART_NN(am4);

// ...

// five conditional inner loop nests ...

// ...

ogc4 += tsize4;

}
ogc3 += tsize3;

}
ogc2 += tsize2;

}
ogc1 += tsize1;

}

Figure 18: The main outer loop nest structure in the function compute erep(). This set consists of
four nested loops.

various performance metrics. From these results we observe significant performance improvement with
the combined loop and memory access optimizations.

8 Conclusions

With the target of analyzing and optimizing MPQC code, we performed loop and memory access
optimizations within the function compute erep(). The improvement in the overall execution time
for the application, as well as for compute erep() and its inner loop nest 1 is shown in Fig. 26. For a
reference point, we use contiguous block copy in place of the required memory movements, also shown
in Fig. 26 and compare the obtained performance with the ideal performance. The performance of
the optimized code turns out to be quite close to the ideal situation.
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Figure 20: Scaling of various metric values with respect to the number of processes: (a) execution
times, (b) number of floating point operations, (c) performance as floating point operations per second,
(d) average number of instructions executed per cycle, and (e) percentage of instructions replayed.
The total values for compute erep(), and its components, the main outermost loop and first and fourth
inner loop nests, are shown.
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Figure 21: Various performance metric values with respect to the molecular mass of the input molecule:
(a) execution time, (b) number of floating point operations, (c) performance in floating point operations
per second, (d) overall average number of instructions executed per cycle, and (e) instruction replay
rate. Values for compute erep() and its components are shown.
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Figure 22: Performance of compute erep() and its component loops with different loop unroll factors:
(a) execution times, (b) total number of cycles, (c) average number of instructions executed per cycles
(IPC), and (d) instruction replay rate.
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Figure 23: Performance comparison between original MPQC code (light shades) and the loop optimized
code (darker shades): (a) execution times, (b) performance as floating point operations per second,
(c) instruction replay rate, and (d) average number of instructions per cycle. Performance is shown
for the function compute erep, its main outer loop, and two of its inner loops.
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Figure 25: Performance comparison between the original MPQC code (original), loop optimized code
(loops-opt), and memory movement optimized code (final): (a) L2 cache load hits, (b) L2 cache load
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